Chapter 13, Part 1.

1. Our sun is a \qquad that gives off light and other forms of energy. A \qquad is an object that travels in a path around the \qquad or around any \qquad . The Earth is one of the planets that \qquad around the sun.
2. In addition, a \qquad is an object that travels in a \qquad around a planet.
Our Earth has \qquad moon travelling around it. Also, there are smaller space objects like
\qquad , \qquad , and \qquad .
3. These objects, the planets and the sun make up something called the \qquad .
Compare the \qquad known planets in the solar system in Figure 13.2 on page 266. List the planets names in the space below. Which are the largest and the smallest planets?
4. Everything in the solar system is in \qquad . This type of motion is called \qquad which is the motion of one object around another. The planets revolve around the sun in paths or
\qquad which are nearly circular with the sun at the centre of each orbit.
5. Each planet in the solar system is \qquad from every other planet in its
\qquad
\qquad , and the \qquad which make it up. Each planet also takes a different amount of time to complete one \qquad around the sun. The \qquad it is from the sun, the \qquad it takes to revolve.
6. The amount of time it takes the Earth is one revolution is by \qquad , approximately \qquad . The longest time to complete one revolving all the planets also \qquad . This Earth years! Apart from about an imaginary \qquad . IE Our North and South Poles!
7. temperatures also vary depending on the planet's \qquad . Density also varies a lot, from the sun and the composition of its \qquad this measures how \qquad the particles of the substance are. The density of water is \qquad or \qquad . How does this compare to the Earth?
8. The planets are made up of different combinations of chemical \qquad and no two planets are th same. However, there are \qquad more common than others. List them in the space below:
9. Who are the Terrestrial planets and why are they given this name? What is their other name?
10. The first four inner planets are mentioned above. The remaining \qquad planets travel the vast areas of outer space and are called the \qquad . Four of these planets are
and their atmosphere is mostly made up of the low density gases \qquad . They are large For this reason they are called the \qquad .
11. The last planet is \qquad . It is so far away and so \qquad that we know little of it. system! An \qquad is a person who studies astronomy and its mysteries.

Part 2.

12. The terrestrial planets are composed mainly of \qquad and
\qquad . This group includes Earth, \qquad , , and
\qquad . They have been studied with electronic spacecraft called
\qquad -
13. \qquad of th is not easy to see from the Earth because it is never far from the \qquad
\qquad . It is a planet of \qquad . Being the closest to the sun, Mercury receives about \qquad times the sunlight and temperatures can reach over \qquad !
14. Since Mercury has no atmosphere to trap heat, it can get as cold as \qquad ! It was first photographed by \qquad in \qquad . The pictures showed that it was a barren, \qquad , with many craters caused by rock collisions in the past.
15. \qquad is the easiest to see from Earth because it is our \qquad neighbour. It appears to be very bright because sunlight reflects from its thick . Venus is the \qquad brightest star and is sometimes called the \qquad . Its atmosphere is mostly \qquad which holds heat and causes the greenhouse effect.
16. Why is the planet Venus so difficult to explore with space probes?
17. The only planet in our solar system with an atmosphere is \qquad . Our atmosphere is mainly \qquad (78\%) and \qquad (21\%). The oxygen is mostly produced by living \qquad . More than \qquad of its surface is covered by water. The water in the atmosphere produces the \qquad and the Earth's
temperature ranges from \qquad to about \qquad .
18. Mars is called the because of its \qquad soil. Mars is bright, although not as bright as \qquad . Mars has \qquad that change with the seasons. It also has , and there is evidence of \qquad , \qquad , and
\qquad . It is the planet with surface conditions most similar to those of \qquad .
19. For these reasons, Mars has been studied more closely than other planets, but \qquad life forms were found there. Scientists believe that it once had a denser \qquad and liquid
\qquad on its surface, this is why they can see certain features on the surface.
20. The \qquad can be found in the outer regions of the solar system. They include \qquad , \qquad , \qquad , and They appear to lack a and are made of \qquad and
Deeper inside these planets they are \qquad and may even become liquids and \qquad .
21. Jupiter has a diameter of \qquad times that of the Earth and has a greater \qquad than all the other planets combined. A day on Jupiter is less than \qquad long which means that it is \qquad very quickly and produces high winds in its atmosphere.
22. Its surface is covered with \qquad or belts. The most interesting feature is a huge hurricane called the \qquad which is larger than two Earths! It has at least \qquad different moons. Using binoculars, you can see the moons \qquad ,
\qquad , , and \qquad . Space probes have discovered , of small rocks travelling around Jupiter in paths about the planet.
23.

of Jupiter, but only is the second largest planet in the solar system and is about $5 / 6$ ths the size Its atmosphere is \qquad of Jupiter's mass. It is the least \qquad of all the planets. , it has high winds, and the day is less than \qquad hours long. Being farther from the sun, its temperature is lower at about \qquad . Saturn is easily identifiable by its \qquad which are composed of over \qquad separate rings. It has at least
\qquad moons.
24. Uranus is \qquad times as big in diameter as planet earth, but since it is so far away from Earth it appears as if it were a star. Astronomers have a lot of data about Uranus from Voyager 2 space probe. It is \qquad because of its \qquad on its side. the same plane as its orbit. This means that Uranus \qquad
25. It has a \qquad like atmosphere and has an average temperature of about \qquad .
The atmosphere is mostly made up of \qquad , with some \qquad and \qquad . The winds are strong, usually blowing up to \qquad .
26. Neptune is the \qquad planet from the sun. It was discovered by patience and mathematical hypothesis as a result of observing Uranus. Later, in 1989, Voyager 2 was able to send back more detailed information about Neptune. They discovered that it had clouds with white sections and a storm section called the \qquad . With an average temperature of \qquad , its atmosphere is mostly A total of \qquad moons are known to orbit Neptune and some dusty thin rings about it.
27. Pluto is unusual because it does not appear to be \qquad nor is it a \qquad . Astronomers hypothesize that \qquad and other solids cover its surface. Pluto's moon is called \qquad and was discovered in 1979. Some believe that Pluto was a moon of \qquad at one time. Take a look at Figure 13.15 on page 278 of your textbook.

Part 3.

28. The sun and the planets are just some of the objects in the solar system. Each \qquad travels about its "parent" planet in an orbit. The Earth's moon is about \qquad of the size of Earth, making it one of the largest moons. There have been \qquad visits to the moon by Nasa.
29. Data has been collected on moon rock, soil, \qquad , and \qquad .

Our moon has no \qquad and has been cratered by the impact of objects from outer space. The moons of other planets were not discovered until the invention of the modern \qquad . In 1610, \qquad was the first person to observe the four moons of Jupiter.
30. Space probes have investigated several different moons and what surprised astronomers the most was the difference in their \qquad and \qquad . Discuss some of these below:
31. The closest moon to Jupiter is \qquad . It is interesting because it appears to have \qquad .
Only the number of moons orbiting the four \qquad planets is known for sure. By studying the planetary moons it helps us understand the \qquad and \qquad of our solar system. Why could knowledge about the planetary moons be useful to us some day?
32. The irregular, rock objects found travelling in orbit between \qquad and \qquad are called \qquad . Another name for these fragments is \qquad Asteroids may be leftovers from a long time ago when the planets were \qquad , or the result of \qquad between what was a large planet and space debris.
33. Most are found between Mars and Jupiter in the \qquad , but some follow Jupiter's orbit or can even come closer to the Earth and Sun. An asteroid called \qquad came within \qquad km of the Earth. They are rich in \qquad which means they could be \qquad . They have a low gravity making rocket \qquad easy.
34. A \qquad is a lump of rock or \qquad that falls from space to Earth. As it passes through the atmosphere \qquad causes the meteor to burn up and produce a Visible streak across the night sky. Most meteors burn up before they reach the Earth's
\qquad . If it does make it to our planet it is then called a \qquad . The larger meteors probably come from \qquad that have orbit which have crossed Earth's path. If it hits the surface, it can create huge craters such as the one at
\qquad .
35. A \qquad is a chunk of rocky or \qquad material covered in ice and
travelling in a very long \qquad around the sun. They are believed to be made up of \qquad .
Their tails always point \qquad from the \qquad as their solar energy acts like
wind.
Read some interesting information about Halley's comet found on page 287 of your text book.

Chapter 14, Part 4.

36. The sun is the \qquad of our solar system. Learning about the sun helps us understand the other stars more easily. Compared with other stars, ours is of \qquad size, but huge when compared to the Earth (about 110 times the diameter). I.E More than Earths could fit inside the sun. The sun is the closest star to the Earth at about \qquad .
37. The sun produces energy through a process called \qquad . The pressure and temperature inside the sun it causes substances to fuse and form new substances. In this way, enormous amounts of heat, light, and other forms of energy like radiation, travel through space.
38. Scientists calculate that the sun has been producing energy for about \qquad years.
The sun is made up of \qquad . It is mostly \qquad , followed by \qquad and other gases. The gases give rise to various layers. The outer layer is called the \qquad which is very hot. Beneath this layer is the \qquad or inner atmosphere. Bursts of ___ travel out from the chromosphere through the corona. Sheets of glowing gases called \qquad burst outwards from the sun and can last for days.
39. Beneath the chromosphere is the \qquad which is made up of boiling gases. The photosphere is the \qquad of the sun and has an average temperature of
\qquad . This region of the sun has dark areas called \qquad which are actually cooler than the rest of the of the photosphere. They are in \qquad which proves that the sun
\qquad on average every \qquad days. Away from the equator the rotation is much
\qquad .
40. Under the photosphere is a huge region of \qquad gases. Closer to the centre of the sun the \qquad and \qquad increases. This where the nuclear fusion takes place and produces the sun's energy, about \qquad degrees celsius.

Part 5.

41. Groups of stars that seem to form patterns are called \qquad which appear to move across the sky as the Earth turns on its \qquad . The easiest constellation to find in the sky is the \qquad which contains the \qquad . Name any 11 constellations:
42. Like the sun, the \qquad seem to rise in the east, travel across the sky, and set in the \qquad . One type of motion of the Earth is called \qquad or spinning of an object on it axis. One rotation takes \qquad hours. It is this motion that makes objects in the sky appear to move.
43. The Earth's axis is an \qquad line joining the \qquad and south poles of the planet.
If it extended northward it would pass through \qquad , the North Star. We can see this star \qquad in Canada. Refer to Figure 14.8 and consider the questions asked
there.
44. The other motion of the Earth is \qquad or the movement of one object travelling around another. The Earth revolves around the \qquad once a year or 365 days. This motion, combined with the tilt of the axis, causes the \qquad of the Earth. It also causes different \qquad and \qquad to be visible at different times.
45. Many of the constellations were given the names of \qquad , and from the Greek word Zodion (for animal) they were called the \qquad . Refer to Figure 14.9 on page 300 of your text. What stars do we see in the northern hemisphere?
46. Predictions based upon the regular movement of objects in the sky have led humans to tell about the \qquad and \qquad conditions. Some people believe that events in the sky can influence events in a person's life. This is called \qquad . This is not to be confused with astronomy which is a \qquad study of outer space. The first astronomers recorded many detailed \qquad of the sky. Astrology is
\qquad considered a science because it has not been tested through experiments. Instead, astrological observations are based upon beliefs and folk law.

Part 6.

47. In the real world, sometimes there are no direct ways to measure certain calculations. One must find a way to \qquad distances using an \qquad method. You can calculate such things using a method called \qquad to determine the distances to some stars and planets indirectly.
48. Triangulation is a \qquad of measuring distances using a scaled diagram and a known length called a \qquad , along with \qquad angles measured from the end of the baseline. Refer to Figure $14.13 \& 14.14$, draw the triangulation models in the space below:
49. The method above \qquad be used to calculated long distances. Read the Activity 14E on page 307 of your textbook. It is a simple process to use the triangulation baseline method. One way to obtain a long baseline is to use the \qquad of the Earth. Since the Earth rotates on its axis, it takes \qquad hours to rotate the diameter of \qquad kilometres.
50. The largest baseline possible to observers on Earth is the diameter of the . Angles to the stars are taken 6 months apart. Refer to Figures 14.16 \& 14.17 on pages $307 / 308$ of your textbook and draw the baseline models in the space below:
51. Since the distances and calculations that astronomers must make are so huge, scientists have developed unit of measurement such as the \qquad notation to write very large or small numbers. A light year is the and that light rays travel in \qquad year. It is not a way to measure \qquad , but to measure \qquad .

Light travels at \qquad or \qquad in one year. Wow!

Part 7.

52. Scientists use a special device called a \qquad to look closely at light given off by the sun and other stars. It \qquad light energy into a series of \qquad called a \qquad . One common example you have seen of this is a \qquad .
The usual colours of the rainbow include: \qquad .
53. When a chemical element is \qquad , it gives off light energy in a unique \qquad when viewed through a spectroscope. The spectrum of a star can tell us about the \qquad elements that make up a star, how \qquad of the element is present, and how \qquad the star is moving towards or away from the Earth. Review Figure 14.21 on page 310 of the text.
54. The \qquad of a hot object lets scientists \qquad its temperature with other hot objects. A \qquad red colour means the temperature is low compared to \qquad ,
\qquad , and the hottest \qquad . So hot stars have more blue \qquad than red light. Describe the classification of stars by using their spectral types:
55. Stars can also be classified by their \qquad , \qquad , \qquad from Earth, or
their \qquad . The brightness of a star is called its \qquad -.

The Greek astronomer \qquad developed a classification of stars by brightness. It was divided into \qquad categories ranging from the brightest as \qquad magnitude. The faintest stars were called \qquad magnitude. Astronomers now use the term in two ways. \qquad magnitude refers to brightness as it appears to us. The term \qquad magnitude refers to the actual amount of light energy given off and takes into account their distance from Earth.

Chapter 15, Part 8.

56. The \qquad consists of all the matter and all the energy, as well as the space in between. Ancient astronomers thought that the Earth was \qquad and everything else revolved around it. Explain the ancient concept of the Earth-centred universe:
57. Briefly describe the contributions of the ancient Greeks and Chinese to astronomy:
58. About \qquad years ago scientific ideas were changing for \qquad reasons. One reason was that scientist were starting to use \qquad to learn about nature. The other reason was the \qquad of the \qquad in the early 1600s. Italian scientist by the name of \qquad improved the invention and magnified the sky by \qquad times.
59. Eventually the Earth-centred view of the universe was replaced by the
\qquad . Briefly discuss the discoveries and contributions made to astronomy by Galileo Galilei:
60. Now we know that the planet revolve around the sun and that the sun is one of countless stars. Astronomers know that other stars are also \qquad and are gather into surrounded by gas and dust. The group of stars that our sun belongs to is called the Way Galaxy. A \qquad is a collection of gas, dust, and \qquad of stars.
61. Past the Milky Way Galaxy is a vast \qquad of space that appears to be empty, but the universe is made up of countless \qquad . See Figure 15.4 on page 322 of the text. The distances between objects in the universe are given different \qquad . Distances between the \qquad in the solar system are called \qquad . Distances between the stars are called \qquad distances and the distances that separate galaxies are referred to as \qquad .

Part 9.

62. Galileo's telescope worked because it \qquad or bent light rays as they pass through a light-gathering \qquad called a, \qquad . This type of telescope is called a \qquad telescope. It allows more light to be \qquad , but lenses can not be made any larger than \qquad in diameter. Why is this the largest possible?
63. A \qquad telescope uses a curved mirror instead of a lens to gather light. The English scientist
\qquad the refracting and reflecting telescopes are called was the first to use such an instrument. Both be portable or set up permanently in \qquad .
64. The Earth's atmosphere \qquad with their views of outer space. To minimize the problem, observatories are usually built on mountain tops. Seven extra moons of Jupiter have just been discovered from such an observatory in Hawaii! The \qquad air high up helps to absorb and \qquad far less light than the \qquad air lower down.
65. Recently, scientists have discovered that putting a telescope in space orbit can overcome the problem of the Earth's atmosphere. The \qquad was launched to view further into outer space, but it was \qquad and had to be fixed by shuttle astronauts.
66. \qquad may be used to gather permanent images of space. Pictures can be taken over a period of many \qquad and thus we can see images beyond the naked eye! Another device used to explore space is the \qquad . It separates light into a spectrum of colours. The spectrum we can see is called the \qquad , but it is only a small part of the broad band of energy called the \qquad spectrum. This includes:
67. A device which receives radio waves from stars and galaxies in outer space is called a \qquad . They look like satellite dishes and can be very large and are made to work in sets called \qquad . Together they collect signals and data over time to make up maps.
68. Parts of the electromagnetic spectrum become \qquad by the Earth's atmosphere and can not be detected from the surface. Satellite observatories, like the \qquad ,
improve our view of space and these images are enhanced back on Earth by \qquad .

Part 10.
69. A \qquad is a huge collection of \qquad , \qquad , and 100s of millions of stars. Stars are attracted to each other by the force of \qquad and are constantly in motion. The Milky Way is \qquad shaped with a inner region called a . Our sun is on the \qquad part of the disk. In between there are
\qquad of stars which indicate the clockwise direct the nucleus.
70. For this reason, the Milky Way is a called a \qquad . Look at Figure 15.17 on page 332 of your textbook and notice the special type of spiral galaxy called a \qquad The only other galaxy you can see from Canada is the \qquad Galaxy.
71. What are four types of types of different shaped galaxies found in outer space?
72. A group of stars which are close and travel together are called a \qquad . They may have as few as \qquad stars or as many as a \qquad in them. They are smaller than a galaxy but they come in two types. An \qquad is a group of \qquad stars found in the main part of the Milky Way. They are
\qquad and \qquad together in space. One example is \qquad in the constellation
\qquad .
73. The second type of star cluster is the \qquad which is made up of approximately a million stars outside the main part of the Milky Way. See Figure 15.20 \& 21 in your textbook. Astronomers have found about \qquad globular star clusters around the Milky Way. Much of the pioneer work was done by Canadian astronomer \qquad . Read her profile.

Part 11.

74. A \qquad is a spread-out cloud of interstellar \qquad or \qquad . It comes from the Latin word for \qquad ! They are both bright and dark nebulas, although they are unique in shape and colour. We can see objects either because it \qquad its own light energy, or \qquad light. This is the same for Nebulas. Look at the example found in Figure 15.22 on page 336 of your textbook. \qquad is found in the summer constellation \qquad . Dark patches are composed of mostly
\qquad .
75. Other unusual objects in space include: \qquad , \qquad , and \qquad .
Massive , high energy objects in outer space are called \qquad . These are not a star or a galaxy, but have some of the characteristics of both. They are strong \qquad of radio waves, appear as a faint star, yet produce huge amounts of \qquad . Scientists think that they are the \qquad and most \qquad sources of universal energy.
76. are a pulsing source of radio waves that do not move in the sky, they may also be called \qquad . What is a pulsar and why does it send out pulses of energy?
77. A \qquad is an extremely small, \qquad core of a star. It has a \qquad force of gravity and pulls everything near towards it. It even pulls \qquad toward it so that it can't be seen! Scientists only know of their existence through

Chapter 16, Part 12.

78. A is a series of actions repeated in the same order every time. The life cycles of stars may take \qquad of years to happen. Stars begin their lives in \qquad or huge clouds of dust and gas. This dust and gas forms \qquad attracted by gravity and becomes tightly packed. Eventually the clumps give off enough energy and become stars.
79. New stars are usually very \qquad at first and are \qquad or \qquad in colour. The life cycle of a star depends upon its \qquad . Low mass stars may live for
\qquad billion years, while medium mass stars like our sun may live for \qquad billion years. High mass stars have a much shorter life, perhaps only a \qquad million years.
80. When a star source of energy runs out it cools and swells up into what is called a \qquad . Their outer layers \qquad and they shrink into what is called a
\qquad . These are very dense and eventually they just fade away. High mass stars end their life cycle in a different way. They swell into \qquad and then they explode in what is called a \qquad . A supernova leaves behind a of dust and gas. At the centre of this is a small
\qquad called a \qquad .
81. Read Figure 16.4 on page 346 of your textbook. Describe the life cycle of high-mas stars:
82. Read Figure 16.5 on page 347 of your textbook. Using a diagram, what possible stages were in the formation of the solar system? Why are the so called "minor bodies" of special interest?
83. The study of the origin and changes of the universe is called \qquad . Longer light wavelengths indicate that the galaxy is moving \qquad from you is called a \qquad Scientists use the \qquad theory to explain the universe beginning from a very dense, hot mass, under \qquad pressure. This mass eventually exploded sending out intense \qquad . Another theory called the \qquad theory suggests that the universe \qquad and \qquad until another cycle repeats itself. We still know very little about how the universe began, but we do know that are still the building blocks of life which form proteins and all living things.
