Chapter 2, Part 1.

	is anything that has		and	. It includes	
all		, and		. Scientists find it useful	
to classify m	to classify matter according to its		. Any matter can be classified as a		
pure substan	pure substance or a		The five different types of matter are:		

2. Changes to substances where no new substance is produced are called _______. During some changes, new substances may result and these are called _______. If one or more new substances are produced and they have different ________to the starting materials then a chemical change has occurred.

3. Chemical changes may involve energy; ______ or ____ may be given off. Most chemical changes are ______ easily _____. Review Table 2.1 in the textbook. What clues do you suggest to tell the difference between physical and chemical changes?

4. There are many kinds of ______. Some are explosive, whiles others may be quite slow like the formation of ______. The substance you start of with is called the ______. and the material you end up with is called the ______. The products have properties that are different to the _______ of the reactants.

5. Scientists use _______to show the reactants and products of chemical reactions. Read the first *Instant Practice* and try the questions by yourself. Do the second set of *Instant Practice* and write your answers in the space below:

6. Chemical reactions go on all around you in some of the most simple tasks that we take for granted. Rusting is an example of ______ where metal is eaten away by such reactions. Corrosion is a common problem in life. From bridge construction, ______, and to the making of ______. Especially for ______ whose metal parts would easily be corroded if they are in fresh or ______ water.

- 7. Salt water and fresh water corrosion can be easily stopped by fastening ______ to a ship or boat. The metal reacts more ______ than the motor or propellor parts in the water. Both ______ and ______ are common example of reactive strips. You can slow corrosion down by using certain types of ______ or primers.
- 8. Some metals like _____ produce a protective covering as they corrode. The metal combines with oxygen from the air and produces ______ which sticks to the surface. It does poorly in salt water though. Iron is a product which is _____ by rusting.
- 9. Another common chemical reaction is burning, this is also called ______. Here, the reactants and oxygen produce ______. Air is only about ______ oxygen. If substances were to burn in pure oxygen, they would burn much more ______.

Part 2.

- 10.
 Read from 2.3 on page 33-35 of the text book. When considering the mass of reactants and products, you must also take into account the mass of any ______ as well as the mass of ______ and ______. Scientists agree that mass is neither ______ or _____. This conclusion started what we know as
- 11. One general statement that sums up the conclusions of many experiments is the ______ of ______ of mass. It states that: In a chemical reaction, ______ is always
- 12. What factors must be considered in order to demonstrate the law of conservation of mass?

13. Can you think of other common household products that are the result of chemical reactions?

14. Turn to page 40 of your text book and answer questions C6, C7, and C8 for review and practice.

Chapter 3, Part 3.

- 15. Read page 42 of the text book and try Activity 3A, questions a, b, & c for your self.

- 18. Explain why choosing Latin names for elements was a logical thing to do?

- 19. Some English names of certain elements are very close to their names in Latin. Others can be very different and _______ easy to recognize; IE ______ whose symbol is _____. Review Table 3.4 to see some of the English and Latin element names of common elements.
- 20.
 There are about ______ elements and although each is different from the next, they can be ______ according to their ______. This makes naming the they form much easier.
- 21. Elements with certain properties are considered as _____. What properties do they have?

22. are elements that do not have the characteristics noted above. Metal elements tend to be grouped together on the ______ of the periodic table. All of the non-metal elements, except ______, are grouped on the ______ of the metals.

23. Often times, elements exhibit the properties of either group. ______ is a gas, but when it forms a compound it behaves just as a metal would. ______ has the properties of a typical metal, but sometimes acts like a ______ element. Both ______ and ______ have metallic and non-metallic properties.

Part 4.

- 24. The combination of symbols representing a particular ______ is called ______ is called ______. The chemical formula for water is ______. This formula tells us that the compound is made up of _______ and ______. It also tells us the ______ numbers of atoms of each that are present in the compound.
- 25. The formula H_2O tells us that in water there are ______ atoms of hydrogen for each atom of ______. Another example includes table salt. NaCL is made up of ______ atom of sodium for every ______ of chlorine.
- 26. What do the following formulas tell us about what they contain? Calcium Chloride and Aluminum chloride:

27. The system of chemical formulas is used for all ______, even those having more than two elements. List some examples of chemical compounds by writing their formulas below:

28. When atoms join together they form larger particles called a ______. Compare the formulas for water and hydrogen peroxide, carbon dioxide and monoxide? Write them below:

29. The atoms of some elements may join with atom like themselves, this creates a ______ of the same element. One example of this is ______ and is written as ______. List three examples of such molecules: ______.

Part 5.

- . There are ______ of chemical compound, each with ______ names. It is the name which tells you what ______ are in it, from just a few to many of them. 30.
- The name of a compound does not give the ______ of the compound. This is apparent if you compare calcium ______ with the chemical formula ______. Here you can see that this compound is made of two ______ atoms and one ______. 31.
- How do scientists know what number of an element's atoms will commonly combine with other 32. atoms of other elements? The ability of an element to combine is called Scientists have given a _______ to the combining capacity of each element. List several examples of combining capacity between common elements:

If you know the combining capacity of an element, then you can ______ the chemical 33. of compounds that contain only two elements. Predict the combining capacity of sodium and bromine to create sodium bromide, and also try calcium oxide below:

- If the combining capacities of the two elements are ______, then the numbers of atoms are also different. For example, ______ has a combining capacity of ______, and chlorine has a capacity of ______. So, in calcium chloride, one atom of calcium combines 34. with atoms of chlorine. The chemical formula for calcium chloride is .
- 35. In a similar way, describe the composition of aluminum oxide:
- Some have a different combining capacity in different . Their 36. different combining capacities are shown by using Roman numerals. Give 4 examples of these metals and their combining capacity below:
- Do the *Instant practice* questions 1 and 2 found on page 56 of your text book in the space below: 37.

38. Scientists have found that there are ______ of atoms that act together as if they were a ______ atom. Some of these act like ______ elements and can combine with ______ to form compounds. List some examples in the space below:

- 39. The total ______ of the products is always _______ to the total mass of the ______. In a chemical reaction, the atoms are _______, but the total ______ of atoms is the same before and after the reaction takes place. In addition, the number of atoms of each element on the _______ side of the _______ is the same as the number of atoms on the _______ side. Atoms are not _______ or _____!
- 40. Turn to page 58 of your text book and complete questions 1 to 5 in *Review 3.4* below: