Chapter 12, Part 1.

1. The scientists who study the earth and geological events are called \qquad .
2. The \qquad is an important factor in geological time since not all changes occur at \qquad rate.
3. Eruptions and \qquad are slight compared to very \qquad but processes that act over an extremely long \qquad .
4. The terms \qquad and \qquad age are different in that the pin points the exact time of an event. The \qquad shows the \qquad events as they happened.

Part 2.

5. Rocks are classified into \qquad groups or \qquad , depending on how they were \qquad .
6. rocks are created by liquid hot \qquad squeezing up to the surface through cracks and \qquad in the crust and escaping to the \qquad .
7. Volcanic \qquad occur when \qquad under pressure escapes to the earth's surface.
8. When magma flows out onto the earth's \qquad it is called \qquad . If it is blown out as small particles it is called \qquad and makes
\qquad .
9. Magmas that cool and \qquad beneath the earth are called \qquad .
Granite rocks can be as old as \qquad years ago.
10. \qquad rocks usually consist of rock fragments like mud, \qquad or
\qquad that have been squeezed or \qquad together under pressure.
11. These \qquad result from the \qquad of exposed rock like physical or \qquad breakdown of rock exposed to \qquad , \qquad , or \qquad .
12. Some sedimentary rocks include: \qquad
13. These originate from the sediments of : \qquad
14. If the conditions are good, often \qquad are found within sedimentary rocks.
15. The action of heat and \qquad deep underground create \qquad rock
from once sedimentary or \qquad rocks.
16. An example is changing \qquad or \qquad into metamorphic \qquad .
17. Briefly describe the metamorphism of shale into slate:
18. Another example of metamorphism is the recrystallizing \qquad in to \qquad .
19. Rocks are never \qquad they are \qquad in the process called the
\qquad .
20. Features produced in the rocks are called geological \qquad .
21. List and briefly describe six different geological structures:

Part 3.

22. The relative age of rocks \& geological structures is a result of the \qquad in which they occurred.
23. When sand or mud \qquad out of water to \qquad on the sea floor, the weight of the water and the sediments eventually \qquad the deeper sediments to form \qquad and \qquad .
24. The \qquad are found toward the bottom in a series of layers while the layers are found towards the top. This is called \qquad .
25. The \qquad states that any event that disturbs rock is always more
\qquad .
26. Read about finding relative ages indirectly on page 264.
27. Explain how fossils may form from the remains of plants and animal on the ocean floor:
28. Fossils found deeper in the thick \qquad as in the Grand Canyon in Arizona, reveal the fact that the deeper you go, the more \qquad the fossils become.
29. Each period in the earth's history has its own \qquad types of life forms.
30. Fossils provide \qquad to finding the relative ages of \qquad .
31. was a relative of the modern crab, lobster, and insect and was a marine animal knows as a \qquad . They became \qquad about 450 million years ago.
32. \qquad use Olenellus as \qquad to indicate a period of geological time.
33. Examine how the geological cross-sections in figure 12.15 on page 267 match up.
34. Index fossils are used for indicating Periods of \qquad when sediment was deposited.
35. What is the significance of the Burgess Shale fossil discoveries?
36. The "Superstack" or \qquad is an imaginary collection of all the sedimentary \qquad and their \qquad in the world.
37. Segments of the Standard Geological Column are named for the \qquad where
\qquad and \qquad were first studied.

Part 4.

38. When trying to find the absolute age of the earth's history, by knowing the \qquad at which something changes, you can \qquad the amount of \qquad that has passed.
39. elements such as \qquad and \qquad can leave particle of themselves in other rocks.
40. Radioactive \qquad accumulate as magma cools and solidifies to form granite. Over \qquad the amount of the \qquad decreases as the amount of the increase.
41. The process of measuring and comparing \qquad to \qquad in a mineral in order to find out its \qquad age is called
\qquad .
42. Radiometric dating uses the concept of \qquad .
43. The half-life of a \qquad can be found by using its to locate the \qquad it takes to use up \qquad percent of itself.
44. List three isotope used in radiometric dating: \qquad
45. Briefly describe the four requirements for an isotope to be used for radiometric dating:
46. Read the career panel about being an Isotope Laboratory technician on page 273.

Part 5.

47. For both igneous and metamorphic rocks, the \qquad starts running as soon as the
\qquad form. A granite crystallized from magma 125 million years ago and found in a sedimentary rock says nothing about when the pebble was \qquad , then
\qquad , and eventually \qquad into sedimentary rock.
48. Read about age dating of sedimentary rocks in Activity 12F on page 275.
49. \qquad have assigned absolute ages in an earth calendar called the \qquad .
50. If a feature like a dike cuts into sedimentary rock, we know the \qquad rock is the oldest.
